Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites.

نویسندگان

  • Satoshi Horike
  • Mircea Dinca
  • Kentaro Tamaki
  • Jeffrey R Long
چکیده

Treatment of selected aldehydes and ketones with cyanotrimethylsilane in the presence of the microporous metal-organic framework Mn3[(Mn4Cl)3BTT8(CH3OH)10]2 (1, H3BTT = 1,3,5-benzenetristetrazol-5-yl) leads to rapid conversion to the corresponding cyanosilylated products. The transformation is catalyzed by coordinatively unsaturated Mn2+ ions that serve as Lewis acids and lead to conversion yields of 98 and 90% for benzaldehyde and 1-naphthaldehyde, the highest thus far for a metal-organic framework. Larger carbonyl substrates cannot diffuse through the pores of 1, and conversion yields are much lower for these, attesting to the heterogeneity of the reaction and its dependence on guest size. The Mukaiyama-aldol reaction, known to require much more active Lewis catalysts, is also catalyzed in the presence of 1, representing the first such example for a metal-organic framework. Conversion yields obtained for the reaction of selected aldehydes with silyl enolates reach 63%, on par with those obtained with zeolites. Size selectivity is demonstrated for the first time with this reaction through the use of larger silyl enolate substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites.

Use of the tritopic bridging ligand 1,3,5-benzenetristetrazolate (BTT3-) enables formation of [Mn(DMF)6]3[(Mn4Cl)3(BTT)8(H2O)12]2.42DMF.11H2O.20CH3OH, featuring a porous metal-organic framework with a previously unknown cubic topology. Crystals of the compound remain intact upon desolvation and show a total H2 uptake of 6.9 wt % at 77 K and 90 bar, which at 60 g H2/L provides a storage density ...

متن کامل

Mn-Metal Organic Framework as Heterogenous Catalyst for Oxidation of Alkanes and Alkenes

Manganese metal-organic framework (Mn-MOF) containing Mn2+ ions, benzenetricarboxylic acid (BTC) and N,N-dimethylformamid (DMF) was prepared and used as catalyst for oxidation of alkenes such as 1,1-diphenylethylene, trans-stilbene, cyclohexene, norbornene, styrene and cyclooctene to epoxides with 33-92% conversion and 75-100% selectivity and oxidation of alkanes such as fluorene, adamantane, e...

متن کامل

Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate).

An optimized procedure was designed for the preparation of the microporous metal-organic framework (MOF) [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). The crystalline material was characterized by X-ray diffraction, optical microscopy, SEM, X-ray photoelectron spectroscopy, N2 sorption, thermogravimetry, and IR spectroscopy of adsorbed CO. CO adsorbs on a small number of Cu2O impurities, and ...

متن کامل

Metal-organic frameworks with functional pores for recognition of small molecules.

Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to d...

متن کامل

A microporous metal-organic framework for gas-chromatographic separation of alkanes.

Microporous metal–organic frameworks (MOFs), which are new types of zeolite analogues, have been paid extensive attention because of their potential applications in gas storage, separation, and catalysis. The modular construction of MOFs allows their pore size and shape to be systematically tuned by the judicious choice of metal-containing secondary building units (SBUs) and/or bridging linkers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 18  شماره 

صفحات  -

تاریخ انتشار 2008